
Relational Query Optimization

Chapter 15

Highlights of System R Optimizer

• Impact:
– Most widely used currently; works well for < 10 joins.

• Cost estimation: Approximate art at best.
– Statistics, maintained in system catalogs, used to estimate

cost of operations and result sizes.
– Considers combination of CPU and I/O costs.

• Plan Space: Too large, must be pruned.
– Only the space of left-deep plans is considered.

• Left-deep plans allow output of each operator to be pipelined into
the next operator without storing it in a temporary relation.

– Cartesian products avoided.

Overview of Query Optimization

• Plan: Tree of R.A. ops, with choice of alg for each op.
– Each operator typically implemented using a `pull’

interface: when an operator is `pulled’ for the next output
tuples, it `pulls’ on its inputs and computes them.

• Two main issues:
– For a given query, what plans are considered?

• Algorithm to search plan space for cheapest (estimated) plan.

– How is the cost of a plan estimated?

• Ideally: Want to find best plan. Practically: Avoid
worst plans!

• We will study the System R approach.

Schema for Examples

• Similar to old schema; rname added for variations.

• Reserves:

– Each tuple is 40 bytes long, 100 tuples per page, 1000
pages.

• Sailors:

– Each tuple is 50 bytes long, 80 tuples per page, 500
pages.

Sailors (sid: integer, sname: string, rating: integer, age: real)
Reserves (sid: integer, bid: integer, day: dates, rname: string)

Query Blocks: Units of Optimization

• An SQL query is parsed into a collection
of query blocks, and these are
optimized one block at a time.

• Nested blocks are usually treated as
calls to a subroutine, made once per
outer tuple. (This is an over-
simplification, but serves for now.)

SELECT S.sname
FROM Sailors S
WHERE S.age IN

(SELECT MAX (S2.age)
FROM Sailors S2

Nested blockOuter block
 For each block, the plans considered are:

– All available access methods, for each reln in FROM clause.

– All left-deep join trees (i.e., all ways to join the relations one-
at-a-time, with the inner reln in the FROM clause, considering
all reln permutations and join methods.)

WHERE S.Rating=S2.Rating

Relational Algebra Equivalences

• Allow us to choose different join orders and to
`push’ selections and projections ahead of joins.

• Selections: (Cascade) c cn c cnR R1 1

 c c c cR R1 2 2 1 (Commute)

 Projections:

A R A ... ABC R (Cascade)

 Joins: R (S T) (R S) T (Associative)

(R S) (S R) (Commute)

R (S T) (T R) S Show that:

More Equivalences

• A projection commutes with a selection that only uses
attributes retained by the projection.

• Selection between attributes of the two arguments of
a cross-product converts cross-product to a join.

• A selection on just attributes of R commutes with
R S. i.e., (R S) (R) S

• Similarly, if a projection follows a join R S, we can
`push’ it by retaining only attributes of R (and S) that
are needed for the join or are kept by the projection.

Enumeration of Alternative Plans

• There are two main cases:
– Single-relation plans

– Multiple-relation plans

• For queries over a single relation, queries consist of a
combination of selects, projects, and aggregate ops:
– Each available access path (file scan / index) is considered,

and the one with the least estimated cost is chosen.

– The different operations are essentially carried out
together (e.g., if an index is used for a selection, projection
is done for each retrieved tuple, and the resulting tuples
are pipelined into the aggregate computation).

Cost Estimation

• For each plan considered, must estimate cost:

– Must estimate cost of each operation in plan tree.

• Depends on input cardinalities.

• We’ve already discussed how to estimate the cost of
operations (sequential scan, index scan, joins, etc.)

– Must also estimate size of result for each
operation in tree!

• Use information about the input relations.

• For selections and joins, assume independence of
predicates.

Cost Estimates for Single-Relation Plans

• Index I on primary key matches selection:
– Cost is Height(I)+1 for a B+ tree, about 1.2 for hash index.

• Clustered index I matching one or more selects:
– (NPages(I)+NPages(R)) * product of RF’s of matching selects.

• Non-clustered index I matching one or more selects:
– (NPages(I)+NTuples(R)) * product of RF’s of matching selects.

• Sequential scan of file:
– NPages(R).

Note: Typically, no duplicate elimination on projections!
(Exception: Done on answers if user says DISTINCT.)

Example

• If we have an index on rating:
– (1/NKeys(I)) * NTuples(R) = (1/10) * 40000 tuples

retrieved.

– Clustered index: (1/NKeys(I)) * (NPages(I)+NPages(R)) =
(1/10) * (50+500) pages are retrieved. (This is the cost.)

– Unclustered index: (1/NKeys(I)) *
(NPages(I)+NTuples(R)) = (1/10) * (50+40000) pages are
retrieved.

• Doing a file scan:
– We retrieve all file pages (500).

SELECT S.sid
FROM Sailors S
WHERE S.rating=8

Queries Over Multiple Relations

• Fundamental decision in System R: only left-deep join
trees are considered.

– As the number of joins increases, the number of alternative
plans grows rapidly; we need to restrict the search space.

– Left-deep trees allow us to generate all fully pipelined plans.

• Intermediate results not written to temporary files.

BA

C

D

BA

C

D

C DBA

Enumeration of Left-Deep Plans
• Left-deep plans differ only in the order of relations,

the access method for each relation, and the join
method for each join.

• Enumerated using N passes (if N relations joined):
– Pass 1: Find best 1-relation plan for each relation.
– Pass 2: Find best way to join result of each 1-relation plan

(as outer) to another relation. (All 2-relation plans.)
– Pass N: Find best way to join result of a (N-1)-relation plan

(as outer) to the N’th relation. (All N-relation plans.)

• For each subset of relations, retain only:
– Cheapest plan overall, plus
– Cheapest plan for each interesting order of the tuples.

Enumeration of Plans (Contd.)

• ORDER BY, GROUP BY, aggregates etc. handled as a
final step, using either an `interestingly ordered’
plan or an additional sorting operator.

• An N-1 way plan is not combined with an
additional relation unless there is a join
condition between them, unless all predicates in
WHERE have been used up.
– i.e., avoid Cartesian products if possible.

• In spite of pruning plan space, this approach is
still exponential in the # of tables.

Cost Estimation for Multirelation Plans

• Consider a query block:

• Maximum # tuples in result is the product of the
cardinalities of relations in the FROM clause.

• Reduction factor (RF) associated with each term
reflects the impact of the term in reducing result size.
Result cardinality = Max # tuples * product of all RF’s.

• Multirelation plans are built up by joining one new
relation at a time.
– Cost of join method, plus estimation of join cardinality gives

us both cost estimate and result size estimate

SELECT attribute list
FROM relation list
WHERE term1 AND ... AND termk

• Pass1:
– Sailors: B+ tree matches rating>5, probably

cheapest. However, if selection is expected to
retrieve a lot of tuples, and index is unclustered, file
scan may be cheaper.

• sid is an interesting order, so hash on sid
kept even if higher cost than rating index

– Reserves: B+ tree on bid matches bid=100; cheapest.

Sailors:
B+ tree on rating
Hash on sid

Reserves:
B+ tree on bid

 Pass 2:
– We consider each plan retained from Pass 1 as the outer, and consider how
to join it with the (only) other relation.

 Reserves as outer: Hash index can be used to get Sailors tuples

that satisfy sid = outer tuple’s sid value (selection on rating moved after join)

Alternative is BNL with σ rating>5(Sailors)

 Sailors as outer: block-nested loop to join with σ bid=100(Reserves)

Reserves Sailors

sid=sid

bid=100 rating > 5

sname
SELECT sname
FROM Reserves R, Sailors S
WHERE R.sid = S.sid and

bid = 100 and rating > 5

Nested Queries

• Nested block is optimized
independently, with the outer tuple
considered as providing a selection
condition.

• Outer block is optimized with the
cost of `calling’ nested block
computation taken into account.

• Implicit ordering of these blocks
means that some good strategies
are not considered. The non-nested
version of the query is typically
optimized better.

SELECT S.sname
FROM Sailors S
WHERE EXISTS

(SELECT *
FROM Reserves R
WHERE R.bid=103
AND R.sid=S.sid)

Nested block to optimize:

SELECT *
FROM Reserves R
WHERE R.bid=103

AND R.sid= outer
value

Equivalent non-nested query:

SELECT S.sname
FROM Sailors S, Reserves R
WHERE S.sid=R.sid

AND R.bid=103

Summary

• Query optimization is an important task in a relational
DBMS.

• Must understand optimization in order to understand
the performance impact of a given database design
(relations, indexes) on a workload (set of queries).

• Two parts to optimizing a query:
– Consider a set of alternative plans.

• Must prune search space; typically, left-deep plans only.

– Must estimate cost of each plan that is considered.
• Must estimate size of result and cost for each plan node.

• Key issues: Statistics, indexes, operator implementations.

Summary (Contd.)
• Single-relation queries:

– All access paths considered, cheapest is chosen.
– Issues: Selections that match index, whether index key has all

needed fields and/or provides tuples in a desired order.

• Multiple-relation queries:
– All single-relation plans are first enumerated.

• Selections/projections considered as early as possible.

– Next, for each 1-relation plan, all ways of joining another relation
(as inner) are considered.

– Next, for each 2-relation plan that is `retained’, all ways of joining
another relation (as inner) are considered, etc.

– At each level, for each subset of relations, only best plan for each
interesting order of tuples is `retained’.

